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IV. DATA PRESENTATION AND DISCUSSION

Detailed concentration and velocity measurements were made in the modified rig. Three configurations
were studied: dome annular jets only, primary jets only, and combined dome annular jets and primary
jets. ,

4.1 DOME ANNULAR JETS

Figure 4.1-1" shows the annular jets only configuration. The following two subsections present the
concentration and velocity measurements, respectively. :

For the annular jets only case, no qualitative information can be collected from the data since all air en-
tering the model was mixed with seed particles. The pictures here do aid in flow visualization.

Pictures for the annular jets only case are presented in Figures 4.1.1-1 through 4.1.1-6. Single and 127
frame averages of the xy plane at z=7.5 in. are seen in Figures 4.1.1-1 and 4.1.1-2. Smoke entering the
annular jet is seen to close behind the center portion of the annular jet and travel downstream. Recircu-
lation zones behind the center portion of the annular jet and along the upper and lower walls are pre-
sent. The pictures at z=7.0 and 8.0 in. have larger recirculation zones along the upper and lower walls.

4.1 m nuia -V i U

Five annular jets were investigated. The three-view drawing in Figure 4.1-1 shows the configuration of
the model except all primary jets were removed and replaced with plugs.

1 ndition

To establish inlet conditions of the annular jets, velocity scans were made at four edges of the center an-
nular jet. Figure 4.1.2-1 shows a sketch of where the data were taken with respect to the center annular
jet.

Figure 4.1.2-2 shows mean and root mean square (rms) velocities at 0.08 in. from the annular jet exit. The
results are plotted versus the radius of the annular jet. The mean velocity has a relatively flat profile
across the annular gap and agreement between data taken at the different edges. A mean velocity of
23.2 ft/sec exists in the gap. The rms velocity shows larger values for the right and left annular jet
edges than the top and bottom edges. This is due to the finite size of the probe volume. The probe vol-
ume length was oriented across the annular gap for these two measurements, causing gradient bias to oc-
cur due to the existence of a wide range of velocities across the probe volume.

1. wiiel ]

Figure 4.1.2-3 provides details of the xy plane data sampling grid. The vector plots for the annular jets
only case are seen in Figures 4.1.2-4 through 4.1.2-19. Figure 4.1.2-4 shows the rig centerplane vector
plot with streamlines. Two regions of high velocity are seen as the fluid discharges into the rig
through the annular jets. These peaks spread out and entrain more fluid as the annular jet of fluid de-
velops into the rig. A portion of the fluid from the upper and lower section of the annular jet setsup a
pair of counter rotating vortices within the center portion of the annular jet. The main portion of the
fluid can be seen converging at the middle of the rig and accelerating as the flow is squeezed between
recirculation regions of flow along the upper and lower walls of the rig. Downstream, the main flow
then decelerates as the recirculation zones are passed. : :

* Figures for Section IV appear at the end of each subsection. The figure number identifies the
subsection in which the figure is discussed.
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Recirculating flow along the upper and lower walls of the rig has been observed through flow visual-
ization studies and will be presented in a later section. The vector plot at 2=7.5 in. shows some indica-
tion of these recirculation zones by the slight turning of the flow at the upper and lower data limits.

Results similar to those at z=7.5 in. are seen at 2=7.4 and 7.6 in. (Figure 4.1.2-5). A recirculation zone
along the upper wall in the z=7.6 in. plot is more evident than the previous two plots demonstrating
asymmetries in the flow. The existence of recirculating flow in the center annular jet region and the
convergence and acceleration of the main flow between the recirculating flow along the upper and lower
walls still persists.

Similar results are seen farther away from the centerplane between 6.8 in. < z < 8.2 in., Figures 4.1.2-8
through 4.1.2-19 for planes z < 7.2 in. and z > 7.8 in. Several general trends can be observed from these
figures. First is the movement of the two velocity peaks at the annular jet exit toward the centerline
and the disappearance of the recirculation zone behind the center of the annular jet. The cause of both
of these is due to the annular jet curvature. The second general trend is the widening of the recirculation
zones along the upper and lower walls. Both recirculation zones are clearly evident farther away from
the rig centerplane. Third, a decrease in the main flow velocity along the centerline is seen. The flow
is still seen to accelerate between the upper and lower recirculation zones but with decreased velocities.

At planes outside of the annular jet, 6.0in. <z £6.7 in. and 8.3 in.£259.0 in,, there is a breakdown of
any real organized pattern of flow. Some general trends are still noticeable in the plots. First, down-
stream flow is reduced and completely disappears by the time the planes at z=6.3 in. and 2=8.7 in. are
reached. Regions of backflow along upper and lower walls gradually converge at the center of the rig
eliminating flow downstream. Second, larger regions of backflow seem to exist along the lower wall of
the rig. Initial measurements showed the flow in the rig was very sensitive to the annular jet endplate
position. If the plate was not perfectly perpendicular to all the rig walls asymmetries would arise.

No well defined recirculation zone can be seen in any of the previous plots. Sometimes very random,
perhaps chaotic, flow velocities are seen in the recirculating flow. The flow was observed to be ex-
tremely unsteady during the flow visualization study. Still, general trends in the flow can be dis-
cerned.

4.1.2.3 Turbul wfield Result

The yz plane Upms and Vrms plots for the annular jets only case can be seen in Figures 4.1.2-20 through
1.1.2-24. Plots at x=0.5 in. (Figure 4.1.2-20) show larger fluctuations in the annular gap of the annular
jet with decreased fluctuations in the inner portion of the annular jet and outside the annular jet, z < 6.8
in. Larger turbulence levels occur at the exit of the annular jet due to the mixing of the fluid in the rig
with that entering the rig. Larger turbulent fluctuations can also be seen at z > 8.2 in. in both Urms and
Vrms plots. Since these levels are not present on the opposite side of the cell, these values may be in er-
ror.

At x=1.0 in. similar results are seen, increased magnitudes are evident in the inner portion of the annu-
lar jet and a spreading of the turbulence due to the entraining of more fluid by the annular jet. The Vrms
plot is seen to be spread out over a larger area than the Urms plot and have less defined fluctuations in
the annular jet region. Downstream plots show similar development of Urmg and Vymg profiles in the
rig (Figures 4.1.2-23 through 4.1.2-29).

Figures 4.1.2-30 and 4.1.2-31 show the Urms and Vrms velocities as they develop downstream of the an-
nular jet in the planes at z=7.0, 7.5, and 8.0 in. The largest Urms fluctuations occur at the annular jet en-
trance, while smaller fluctuations are present in the center of the annular jet. For the Vrms plots, peak
values can be seen behind the center of the annular jet. The turbulence spreads toward the upper and
lower walls and the cell boundaries with decreasing magnitude farther downstream. Uniform turbu-
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lence can be observed at x=6.0 in., but magnitudes are much greater than zero unlike values for the pri-
mary jets only case.

The two-dimensional turbulent kinetic energy plots are presented in Figure 4.1.2-32 through 4.1.2-36.
Trends existing in the Urms and Vrms plots are also seen to occur here. Similar plots are seen at x=0.5 in.
and x=1.0 in. Most of the turbulent energy can be seen concentrated at the annular jet exit due to larger
velocity gradients in this area because of annular jet flow mixing with the flow already in the rig. At
x=1.0 in., the turbulent energy can be seen to spread out more and increases magnitude in the inner
annular jet region. Regions of peak turbulence energy can be seen at z> 8.2 in., where peaks existed in

the rms plots. Similar resuits can be seen at downstream stations x=1.5 to 9 in. in Figures 4.1.2-33
through 4.1.2-36.

Figure 4.1.2-37 shows line plots of the K' distribution as it develops downstream for planes at 2=7.0, 7.5,
and 8.0 in. The greatest turbulence energy can be seen at the annular jet exit, as was seen from the contour
plots. Planes at z=7.0 and 8.0 in. have peak values at the rig center, while at z=7.5 in. two peaks are
seen on both sides of the rig center. Peak magnitudes diffuse on downstream, but the K’ distribution is
not quite uniform at x=6.0 in. '

yz plane plots of the xy plane Reynolds shear stress are in Figures 4.1.2-38 through 4.1.242. The U'V'
distribution at x=0.5 in. indicates that the largest magnitude occurs in the annular jet exit region and
near the cell edges at z > 8.5 in. Peak fluctuations in the annular jet region occur at the edges of the an-
nular gap where the largest turbulent friction exists due to fluid mixing between fluid entering through
the annular jet and the fluid within the rig. Another flat profile can be seen outside the annular jet re-
gion, indicating that very little momentum transfer is occurring. Peak fluctuations at z > 8.5 in. may be
caused by errors in measurement. Similar results are seen between x=1.0 in. and x=9.0 in. Additional
plots for downstream locations are in Figures 4.1.2-39 through 4.1.2-42.

Figure 4.1.243 shows Reynolds shear stress distributions in planes at 2=7.0, 7.5, and 8.0 in. Largest
magnitudes and variations occur immediately downstream of the annular jet, where large velocity gra-
dients and recirculation zones are present. Downstream, the shear stress spreads toward the rig bound-
aries with decreasing magnitudes. Positive values of U'V' occur in the upper portion of the rig and neg-
ative values in the lower portion of the rig.
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TE92-2539

Figure 4.1.1-1. Annular jets only single frame picture, 2=7.5 in.

TES2-2540

Figure 4.1.1-2. Annular jets only 127 frame average picture, z=7.5 in.
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TE92-2541
Figure 4.1.1-3. Annular jets only single frame picture, z=7.0 in.

TEQ2-2542
Figure 4.1.1-4. Annular jets only 127 frame average picture, z=7.0 in.
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TEQ2-2543

Figure 4.1.1-5. Annular jets only single frame picture, 2=8.0 in.

TE92-2544
Figure 4.1.1-6. Annular jets only 127 frame average picture, z=8.0 in.
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Figure 4.1.2-1. Annular jet scans for inlet conditions.
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Figure 4.1.2-2. Annular jets only and Urms distribution of the annular jets at x=0.08 in.
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Figure 4.1.2-16. Annular jets only mean velocity vector plots a) z=6.3 in. b) 2=8.7 in.
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42 PRIMARY JETS

Figure 4.2-1 shows a drawing of the primary jets only configuration. The next two subsections will pre-
sent the concentration and velocity measurements, respectively.

421 Primary lets - Con on M

Marker particles were introduced into the combustor model through the lower primary jet for this case.
Data collected for this case will provide qualitative information about the mixing of the two primary

jets.

Results for the primary jets only case are presented in Figures 4.2.1-1 through 4.2.1-12. Mean concentra-
tion values were obtained by averaging 127 frames of images of the xy plane. Figures 4.2.1-1and 4.2.1-2
are single and 127 frame averages of images taken at z=7.5 in. The spread at the impingement region is
less visible in the average picture due to oscillations of this region above and below the centerline. By
averaging, the observable oscillations are reduced. Pictures in Figures 4.2.1-3 through 4.2.1-6 are 0.5 in.
from the rig centerplane. The spreading of the jet impingement point can clearly be seen in all of the
pictures, due to spreading of smoke in the xz plane. The turbulent nature of the flow is evident by the
difference between single and averaged frame pictures. Symmetry should exist between averaged
frames since each is the same distance from the rig centerplane.

Figures 4.2.1-7 through 4.2.1-12 present 3-D and line plots of the concentration inside the air rig. The
line plots are taken at stations of constant x from the lower to upper wall of the rig. At z=7.5 in., the
smoke entering the lower primary jet enters the rig up to the stagnation point with the opposing jet.
Smoke is moved upstream and downstream by the jet stagnation point spreading radially in the xz
plane. The line plots indicate that concentrations between upper and lower walls increase farther
downstream and show a peak concentration near the rig centerline. Moving 0.5 in. away from the z=7.5
in. plane, z=7.0 and 8.0 in,, line plots show an increased minimum concentration level at stations up-
stream and downstream of the primary jets. Peak concentrations still exist near the rig centerline at
y=1.5in. A peak can also be seen in the 3-D plots near xand y =1.5 in. due to the spreading of the smoke
from the stagnation regions of the primary jets in the xz plane. Even farther away from the center-
plane, z=6.5 and 8.5 in., the concentration levels spread out even more with peak values slightly above
the rig centerline. As the smoke becomes completely mixed with air entering the upper primary jet, con-
centration levels are nearly equal from bottom to top walls of the rig downstream of x=1.0 in.

Figure 4.2.1-12 shows a line plot comparing measured concentrations along the primary jet axis of the
different z planes. Planes equal distance from the center plane, z=7.5 in., should be symmetric due to rig
symmetry. Planes at z=6.5 and 7.0 in. have peak concentrations placed closer to the upper wall of the
rig than planes at z=8.0 and 85 in. A flapping motion of the stagnation region was observed in the xy
plane. This flapping motion should also be present in the yz plane if symmetry is valid, and if more
pronounced may cause a tilt of the stagnation region. Any slight misalignment in the jet could cause
these asymmetries to arise.

Prima - Velocity Measuremen

A set of five pairs of opposing primary jets centered 1.5 in. (x/H = 0.5) downstream of the rig endplate

was used. The annular jet endplate was replaced with a solid one-inch thick aluminum plate for this

case. Figure 4.2.2-1 shows a drawing of the rig when annular jets are used in conjunction with the

primary jets. B T
4.2.2.1 Inlet Conditions

To establish inlet conditions, velocity measurements of the primary jets were conducted. An extensive
measurement of the lower primary jet was performed to observe the development of the jet as it enters
the combustor model. A series of xy plane scans using the grid in Figure 4.2.2-2 were performed. These
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scans were taken at 0.05 in. intervals in the z direction resulting in the xz plane grid shown in Figure
4.2.2-3. Since the average probe volume length was 0.05 in., the probe volume should not overlap be-
tween data points. Additionally, a measurement was taken of the upper and lower jets to determine the
relative strengths of the two primary jets.

The mean and rms plots of the lower jet are presented in Figures 4.2.24 through 4.2.2-10. Figure 4.2.24
shows the axial velocity, distribution of the lower jet at y=0.1 in. From this plot it is evident that the
entrance velocity has a flat top profile with mean velocity of 27.9 ft/sec. This yields a Reynolds num-
ber of 6,392 based on the jet diameter. The axial fluctuating velocity, Vrms, in Figure 4.2.2-4 indicates
peak values along the edges of the jet at 2=7.7 and z=7.3 in. and lower values at the edges of the jet at
x=1.3 and x=1.7 in. This is caused by the length of the probe volume being approximately the same size
as the grid spacings.

Measurements taken at y=0.25, 0.5, 0.75, 1.0, and 1.25 in. (Figures 4.2.2-5 through 4.2.2-9) show the max-
imum velocity at the center of the jet starts to gradually decrease and spread as more fluid is entrained
into the jet and it nears the opposed jet. Also, the jet is seen to have a slight bend downstream due to
the crossflow in the rig. The Vrms plots indicate that larger fluctuations occur at the jet edges as the jet
emerges into the more turbulent flow. The upstream edge of the jet, x=1.3 in., shows larger fluctuations
than any other part of the jet due to recirculating flow upstream of the jet entrance.

The plane at y=1.5 in. is at the center of the combustor model, Figure 4.2.2-11. Velocity fluctuations of
-10 to 6 ft/sec are a result of the fluctuating stagnation point of the two opposing jets. Higher rms values
due to increased turbulent mixing are also evident. Flow visualization revealed that the stagnation
point of the two jets oscillated about the midpoint.

The velocity distribution 0.6 in. from the primary jet inlets is plotted in Figure 4.2.2-11, showing a com-
parison between the upper and lower primary jets. Approximately a 3% difference between the upper
and lower jet maximum velocity is present. The rms values indicate that the upstream side of the jet
has a slightly higher turbulence level due to recirculating flow.

4222 M wii 10|

Perhaps the most helpful form of data presentation of the mean flow is xy plane vector plots. Vector
plots at the various z locations provide a quick and informative view of the flow. With the addition of
streamlines to the vector plots, recirculation zones and symmetry about the rig centerline is evident.
Figure 4.2.2-12 provides details of the xy plane sampling grid. Figures 4.2.2-13 through 4.2.2-17 show
vector plots for 7.1 £z < 7.9 in. Symmetry should exist between upper and lower halves of the rig and
between planes equal distance from the centerplane (2=7.5 in.).

Figure 4.2.2-13 shows the vector plot for the rig centerplane (z=7.5 in.). Clearly evident is the upper
rear recirculation zone centered about x=3.5 in. and y=2.2 in. A lower recirculation zone also exists at
approximately x=3.5 in. and y=0.75 in. Asymmetry between upper and lower halves is clear as the flow
at the centerline tends toward the lower wall, resulting in a reattachment point of the lower recir-
culation zone farther upstream than the upper zone. This reattachment point will cause the upper re-
circulation zone to be larger than the lower recirculation zone. A larger recirculation zone will allow
the flow to diffuse faster and cause the stagnation point of the recirculation zone to occur farther up-
stream.

Plots at the planes of z=7.4 and z=7.6 in. (Figure 4.2.2-14) should be the same due to symmetry of the rig.
These two plots show the centers of the upper and lower rear recirculation zones occur at x=3.5, y=2.1 in.
and x=3.75, y=0.7 in., respectively, for z=7.6 in. The same points for z=7.4 in. are at x=3.45, y=2.2 in. and
x=3.75, y=0.7 in., respectively. Here symmetry between planes was seen to exist, while symmetry
between upper and lower halves of the rig does not exist.
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Comparison of the two planes at 2=7.7 in. and z=7.3 in. (Figure 4.2.2-15) shows that the recirculation
zones in the z=7.3 in. plane are centered slightly forward of the zones in the z=7.7 in. plane. In addi-
tion, the recirculation zones in the z=73 in. plane entrains fluid immediately downstream of the jet
stagnation point, while in the z=7.7 in. plane the fluid immediately downstream of the jet stagnation
point is allowed to move with the axial flow.

Different features of the flowfield are seen at the 2=7.2 and z=7.8 in. planes. In Figure 4.2.2-16, flow
forward of the jet inlet point, x=1.5 in., is not all entrained into the forward recirculation zones. Since
the primary jets have a diameter of 0.43 in., the planes here are outside the boundaries of the jet. Thus,
fluid is able to flow downstream and be entrained into the rear recirculation zones. Comparison between
the two planes shows definite asymmetries. The rear recirculation zones in the za7.2 in. plane are off-
set due to the reattachment point of the lower recirculation zone being farther upstream than the upper
zone. While both planes see a bending of the flow toward the lower wall, only the plane at z=7.2 in.
shows the dramatic offset of recirculation zones.

Figure 4.2.2-17 shows plots at 2=7.1 and z=79 in., respectively. The plane at z=7.1 in. seems fairly
symmetric with rear recirculation zones at approximately x=3.5 in. The flow between upper and lower
halves of the rig is symmetrical as the fluid continues downstream. The plane at z=7.9 in. shows offset
rear recirculation zones with the upper and lower zones centered around x=3.4 and 3.2 in., respectively.
In addition, forward recirculation zones begin to become visible within the measured portion of the
flow.

Additional vector plots of the flow between the planes z=6.0 and 7.0 in. and z=8.0 and 9.0 in. are pre-
sented in Figures 4.2.2-18 through 4.2.2-28. Table 4.2- presents approximate forward and rear recircu-
lation zone locations for the planes 6.5 in. €z < 8.6 in. Some general trends of the recirculation zones can
be seen from this table. Forward recirculation zones move downstream and toward the upper and lower
walls farther away from the rig centerplane. Also, the forward recirculation zones tend to be fairly
symmetric between upper and lower portions of the rig. These recirculation zones are clearly visible be-
tween the planes z=6.5 and 7.0 in. and z=8.0 and 8.5 in.

The center of the rear recirculation zones tends to move upstream and toward the upper and lower walls
the farther away it is from the rig centerplane, z=7.5 in. Asymmetry between upper and lower recircu-
lation zones is present in many of the plots. In addition, there seems to be a lot of variation in the occur-
rence of the recirculation zone centers between planes on different sides of the rig centerplane. Another
very noticeable aspect in all the plots is the trend for the streamlines to bend quicker toward the lower
wall of the rig. Reverse flow upstream of the jet entrance is evident even to the cell boundaries at z=6.0
and 9.0 in., indicating how influential the primary jets are throughout the cell.

422.3 Turbu wfiel it

Figures 4.2.2-24 through 4.2.2-37 present the axial fluctuating, Urms. and the vertical fluctuating,
Vrms, velocities in the yz plane. At stations x=0.5 and x=1.0 in. peak values of the fluctuating compo-
nents are seen at the center portion of the rig. The magnitudes of these quantities are seen to increase at
station x=1.0 in. due to the measurements being closer to the impinging jets. The maximum value of the
Urms term is seen to be more and more concentrated in the center portion to the rig at x=1.0 in. than at
x=0.5 in. The Vrms term seems to diffuse and spread out at the x=1.0 in. station while the magnitudes of
the fluctuations in the center portion of the rig nearly doubles.

At the entrance of the primary jets, x=1.5 in., the influence of the primary jets can clearly be seen. In
Figure 4.2.2-31, the Urms velocity is seen to have a large decrease in magnitude between the upper and
lower walls of the rig at z=7.5 in., indicating very low turbulence in this region. Two peaks can be seen
on both sides of this dip, at 2=6.6 in. and z=8.4 in., indicating increased turbulence in these regions due to
the fluid flow accelerating around the jets downstream.
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Table 4.2-1.
Pri . lv recirculation zone locat

Forward zones ‘ Rear zones

z X y x Y x b4 x Y
6.5 1.2 24 1.3 <05 I -- -- --
6.6 1.0 2.25 1.0 0.75 29 25 27 <05
6.7 085 215 0.85 0.85 3.15 2.35 3.0 <035
6.8 0.8 2.05 0.8 0.95 3.5 24 0.2 0.5
6.9 065 2.0 0.65 0.95 34 2.35 33 0.7
7.0 <0.5 21 <0.5 0.95 345 2.25 3.2 0.7
7.1 <0.5 2.0 <0.5 1.0 3.5 2.3 34 0.7
7.2 <0.5 2.0 <0.5 1.0 3.45 2.2 3.6 0.7
7.3 -- -- -- -- 3.35 2.2 3.3 0.8
7.4 -- -- -- -- 345 2.2 3.7 07
7.5 -- -- -~ -- 3.5 2.2 3.8 0.7
7.6 -~ -- -- -- 3.5 2.1 37 0.7
7.7 -- -- -- -- 3.4 2.15 3.5 0.7
7.8 <0.5 2.0 <0.5 1.0 3.5 2.2 3.4 0.8
7.9 <0.5 2.0 <0.5 1.0 3.4 2.2 3.2 0.8
8.0 0.65 1.95 0.5 1.0 3.35 2.2 - -~
8.1 0.7 2.0 0.7 1.0 3.25 2.25 3.4 0.7
8.2 0.8 2.05 0.8 0.95 3.35 23 3.2 0.7
8.3 085 2.05 0.85 0.9 3.0 2.3 3.1 0.7
8.4 1.1 2.15 1.0 0.85 3.0 2.3 3.0 <0.5
8.5 1.3 2.35 1.3 0.7 2.7 >25 2.7 <05
8.6 1.5 2.5 1.5 0.6 -- -- -- -~

The Vyms plot at x=1.5 in. shows a decrease in the Vrms velocity at the jet centerplane. However, this
decrease in magnitude does not span the entire height of the rig. Peak values are seen at the middle of
the rig at y=1.5 in., z=7.5 in. This is caused by increased turbulence due to the fluctuation of the jet
stagnation point about y=1.5 in. '

Downstream of the primary jet entrance, at x=2.0 in., the magnitude of the Urms plot increases due to
the acceleration of fluid from the jet stagnation point between the upper and lower recirculation zones.
The Vrms term shows a decrease and diffusing of magnitudes toward the walls and cell boundaries.
Similar results are seen at stations x=2.5, 3.0, 3.5, 4.0, and 6.0 in., see Figures 4.2.2-33 through 4.2.2-37.

Figures 4.2.2-38 and 4.2.2-39 show line plots of the Urms and Vrms velocities at measurement locations
between x=0.5 and 6.0 in. for planes at 2=7.0, 7.5, and 8.0 in. The largest fluctuations in the Urms term
occur immediately upstream and downstream of the jet stagnation point. The largest Vrms fluctuations
occur at the jet stagnation point, x=1.5 in. The Urms and Vrms magnitudes decrease and diffuse down-
stream and farther from the rig centerline until nearly uniform magnitudes at x=6.0 in.

An alternate way to view the previous terms is through the two-dimensional turbulent kinetic energy
term. Figures 4.2.2-40 through 4.2.2-44 show the results of the yz plane plots for K'. At station x=0.5
in., a central peak is observed in the middle regions of the rig indicating higher levels of turbulence
than other regions of the flow. Similar results are seen at x=1.0 in. where the magnitude of K' increases
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due to the acceleration of the fluid from the jet stagnation point between the forward recirculation
zones.

The greatest magnitude of turbulence energy occurs at the primary jet impingement, Figure 4.2.241. A
reduced magnitude of turbulence energy exists at z=7.5 in., where the primary jets enter, and larger
peaks are on either side due to jet entraining fluid within the rig. Also visible are the two peaks on ei-
ther side of the rig midpoint, see Figure 4.2.2-31 for the Urms profile. Again, acceleration of fluid

around the primary jets causes this increased turbulence.

Results at x=2.0 in. indicate a spreading of the turbulence energy in the z direction. Increased flow
around the primary jets and downstream are responsible for this. Similar plots downstream are pre-
sented in Figures 4.2.2-42, 4.2.243, and 4.2.2-44.

Figure 4.2.245 represents line plots of K’ at the z planes of 7.0, 7.5, and 8.0 in. It can be seen that the

highest turbulence levels are around the stagnation region of the two jets. Turbulence levels decrease
and spread towards the upper and lower walls of the rig as the flow continues downstream. Uniform
turbulence is present by the time the flow is at x=6.0 in.

Figures 4.2.2-46 through 4.2.2-50 represent yz plane contour plots of the Reynolds shear stress component
in the xy plane. Higher magnitudes of Reynolds stress occur in areas of higher velocity gradients where
large momentum transfer occur. At the x=0.5 in. station peak values occur between z=6.7 in. and z=8.3 in.
In addition, the sign of the Reynolds stress changes at the midpoint of the rig, y=1.5 in. These peak
values occur in the regions where the forward recirculation zones occur. A similar plot is seen at the
x=1.0 in. station. Only differences between this plot and at x=0.5 in. is that the magnitudes have
increased.

A very different plot is seen at x=1.5 in. in Figure 4.2.2-47. Peak negative values occur at the z=7.5 in.
plane where the primary jets enter. This indicates a large amount of momentum transfer taking place
due to the fluid being entrained into the entering jet. Maximum positive values occur in the center of the
rig on either side of the centerplane. Here, the stagnation point of the two jets results in large amount of
shear stress and higher turbulence as the stagnation point fluctuates.

The plot at x=2.0 in. shows negative values of shear stress now occur on the lower half of the rig, while
positive values occur on the upper half of the rig. Peak values can be seen to occur between 2=6.7 and
z=8.3 in., due to the recirculation zones in these regions. Additional plots downstream have similar
trends and can be seen in Figures 4.2.2-48, 4.2.2-49, and 4.2.2-50.

Figure 4.2.2-51 shows the Reynolds shear stress distribution in the planes at z=7.0, 7.5, and 8.0 in. Peak

values occur at the jet stagnation region. Magnitudes are seen to decrease farther away from the center-
plane and a uniform distribution between upper and lower walls develops at x=6.0 in.
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© TE92-2590
Figure 4.2.1-1. Primary jets only single frame picture, z=7.5 in.

TE92-2591
Figure 4.2.1-2. Primary jets only 127 frame average picture, z=7.5 in.
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TE92-2592
Figure 4.2.1-3. Primary jets only single frame picture, z=7.0 in.

TE92-2593
Figure 4.2.14. Primary jets only 127 frame average picture, 2=7.0 in.
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TE92-2594

Figure 4.2.1-5. Primary jets only single frame picture, z=8.0 in.

TE92-2595
Figure 4.2.1-6. Primary jets only 127 frame average picture, z=8.0 in.
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Figure 4.2.2-3. xz plane primary jets sampling grid.

432



NDYOON
FMIONNNN -~ -

n <

cata
locapons

0:0+[J+0-0

0ooooo0O0O
3755432.1

TE92-2604

Figure 4.2.24. Primary jets only V and Vrms distribution of the primary jets at y=0.1 in.
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Figure 4.2.2-7. Primary jets only V and Vrms distribution of the primary jets at
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4.3 DOME ANNULAR JETS AND PRIMARY JETS

Figure 4.3-1 shows a drawing of the annular and primary jet configuration. The following two subsec-
tions present the concentration and velocity measurements, respectively.

For the annular and primary jets, case marker particles were introduced into the combustor model
through the annular jets only and through the lower primary jet. This allowed the observation of the
mixing between the annular and primary jets.

Results for smoke in the lower primary jet with annular jet flow are shown in Figures 4.3.1-1 through
4.3.1-12. Figures 4.3.1-1 and 4.3.1-2 show single and 127 frame average at z=75 in. The effect of the an-
nular jet can be seen by the bending of the flow from the primary jets downstream. The single frame pic-
ture has higher concentrations of smoke from the lower primary jet downstream than the averaged pic-
ture, thus demonstrating the unsteadiness of the flow. In the averaged pictures of the planes at z=7.0
and 8.0 in. (Figures 4.3.1-3 through 4.3.1-6) higher concentrations of smoke are seen in the corners and
along the upper and lower walls. Similarity between planes is also seen as demonstrating symmetry.

Line and 3-D plots of the mean concentration are in Figures 4.3.1-7 through 4.3.1-12. At z=7.5in,, the in-
fluence of the annular jet on the primary jets is clearly apparent. Most of the smoke entering from the
primary jet is pushed downstream, with very little smoke being mixed upstream of the upper primary
jet. In comparison with Figure 4.3.1-7, with no annular flow, concentration levels of five to six times
larger exist in the same area. Downstream of the primary jets, concentration profiles between the upper
and lower walls smooth out with peak values on the lower side of the centerline. As the planes move
farther away from the centerplane, the maximum concentration levels occur just above the rig center-
line. Concentration levels along the upper half of the rig for x < 1.5 in. remain relatively small com-
pared to the levels when no annular jet flow is used (Figures 4.3.1-7 through 4.3.1-11).

Figure 4.3.1-12 presents a comparison of concentration profiles along the primary jet axis for z=6.5 to 8.5
in. Symmetry between planes at z=7.0 and 8.0 in. and =65 to 8.5 in. is seen to exist with the largest
deviation between the plots along the upper wall of the rig. Comparison with Figure 4.3.1-12, with no
annular jet flow, shows reduced concentration levels in the middle and upper half of the rig when the
annular jet is on.

4.3.1.2 Smoke in Annular Jet

Results for smoke entering the annular jet with primary jets on are shown in Figures 4.3.1-13 through
4.3.1-23. Single frame and 127 frame averages for the z=7.5 in plane are given in Figures 4.3.1-13 and
4.3.1-14. Single and average frames are similar in appearance. Higher concentrations downstream of
the primary jets is present for the single frame picture, while the average picture has a more uniform
distribution between walls. At z=7.0 and 8.0 in. (Figures 4.3.1-15 through 4.3.1-18) the average frames
show higher concentrations in the corners and along the upper and lower walls of the rig, similar to
when smoke was in the primary jets.

Mean concentrations are plotted in Figures 4.3.1-19 through 4.3.1-23 with smoke in the annular jet. From
the z=7.5 in. plane, the annular jet flow has a flat concentration distribution between upper and lower
walls, up to the primary jet entrance. The smoke is then squeezed between the primary jets and gradu-
ally spreads out between upper and lower walls downstream. Farther from the centerplane, the concen-
tration distribution flattens out. Distributions in the 2=7.0 and 8.0 in. planes have constant values near
the walls and flat top profiles across the annular jet inlet upstream of the primary jets. At z=65 and 8.5
in. this is not seen, and higher concentrations are downstream of x=1.5 in. Higher concentrations exist on
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the upper than on the lower walls in all these plots, possibly indicating nonuniform smoke in the
annular jet or Gaussian beam effects in the laser sheet.

Figure 4.3.2-1 presents the three-view drawing for this case. The five pairs of primary jets were cen-
tered 1.5 in. downstream of the annular jet entrance.

4.3, ndition:

To establish inlet conditions for this case the same type of measurements made on the primary jets for
the primary jets only case were performed along with measurements of the annular jet described earlier.
Figures 4.3.2-2 through 4.3.2-8 present contour plots of the mean and rms velocity of the lower primary
jet. Figure 4.3.2-2 shows the mean velocity distribution at y=0.1 in. above the lower primary jet. Again,
a flat top profile similar to the primary jets only results is seen. A mean velocity of 15.4 ft/sec is
present resuliting in a Reynolds number of 3528. The rms velocity shows peak values along the edges of
the jet at z=7.7 in. and 2=7.35 in. and lower peaks along edges at x=1.35in. and x=1.7 in. Errors due to
probe volume length and the grid spacing produce this result. In addition, higher fluctuations occur on
the upstream side of the jet, x < 1.3 in., than on the downstream side, due to a recirculation zone at this
edge of the jet.

Measurements taken in the planes at y=0.25, 0.5, 0.75, 1.0, and 1.25 in. (Figures 4.3.2-2 through 4.3.2-7)
show the development of this jet as it enters the combustor model. The mean velocity of the jet can be
seen to gradually decrease, and the jet appears to bend downstream as more and more fluid is entrained
by the jet and the crossflow from the annular jet mixes with the jet. Comparison of these data with
those obtained for the primary jets only case (Figures 4.2.2-5 through 4.2.2-9) demonstrates the effect of
the annular jet on the primary jet flow. In addition, negative velocities are clearly evident on the up-
streamn side of the primary jet for planes up to y=1.0 in., while the downstream side of the jet has veloc-
ities between 0.5 to 2 ft/sec. This is caused by a clockwise rotating recirculation zone between the end-
plate and the upstream side of the primary jet. These negative velocities are seen to disappear at
y=1.0 in., due to the annular jet crossflow. :

The rms velocities in Figures 4.3.2-2 through 4.3.2-7 show increased fluctuations on the upstream side of
the primary jet until the y=1.0 in. plane is reached. Larger fluctuations are evident on the downstream
side of the jet for y=1.0 and 1.25 in. This change in turbulence is due to the deflection of the primary jet

by the annular jet and the formation of a rear recirculation zone at the downstream edge of the jet.

The jet stagnation point is reached at the y=1.5 in. plane (Figure 4.3.2-8). The mean velocity is similar
to Figure 4.2.2-10 for the primary jets only case. The mean velocity is seen to fluctuate about zero due to
the unsteady fluctuations of this stagnation point. A difference is visible between the rms velocities in
Figure 4.3.2-8 and Figure 4.2.2-10 for the primary jets only case. For this case, the rms velocity steadily
increases farther downstream, while for the primary jets only case the maximum fluctuations occur
around the center of the jet. The annular jet crossflow causes a severe bending in the primary jet, produc-
ing this increased turbulence downstream farther than at the center of the plot.

A comparison between the upper and lower primary jets can be seen in Figure 4.3.2-9. Only approxi-
mately a 2.5 % difference is seen between the upper and lower jets maximum velocity. The rms velocity
comparison again shows close agreement between upper and lower jets. Increased turbulence is also evi-
dent on the upstream side of the primary jet due to a recirculation zone.

Figure 4.3.2-10 shows the annular jet inlet velocities taken on four edges of the annular jet at 0.08 in.

from the inlet. A very flat velocity distribution similar to Figure 4.1.2-2 for the annular jets only case
can be seen. A mean velocity of 15.8 ft/sec is present in the center of the annular gap. The rms velocity
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shows larger peak values for the right and left sides of the annular jet due to the probe volume length
being nearly five times larger than the grid points.

4.32.2 Mean Flowfield Results

Figure 4.3.2-11 provides details of the xy plane sampling grids. Vector plots for the annular and pri-
mary jets case are presented in Figures 4.3.2-12 through 4.3.2-27. The centerplane is seen in Figure 4.3.2-
12. The flow issuing from the annular jet can be seen entering at y=0.85 and y=2.15 in. This flow pene-
trates up to the primary jets inlet at x=1.5 in. and then is turned parailel to the primary jets forming re-
circulation zones outside the annular region, y < 0.7 in. and y > 2.3 in., and in the center of the annular
region. The primary jets can be seen bending downstream due to the annular jet interaction. Downstream
of the primary jet inlet, the flow accelerates between two recirculation zones on the upper and lower
walls of the rig. This flow slowly diffuses as the recirculation zones shrink in size downstream.

The recirculation zones are clearly visible with the aid of streamlines. The rear recirculation zones
show symmetric placement between upper and lower portions of the rig. The two forward recirculation
zones centered in the annular region also show symmetric placement. Two additional recirculation
zones outside of the annular region are also present, but since they are outside the measurement grid
they do not stand out as clearly.

Comparison between planes at z=7.4 and z=7.6 in. (Figure 4.3.2-13) shows similar results. The rear re-
circulation zones at the z=7.4 in. plane can be seen to be slightly forward of the recirculation zones at
the z=7.6 in. plane. In addition, the flow is seen to bend toward the lower wall at the z=7.4 in. plane,
while there is no bending in the z=7.6 in. plane. The two forward recirculation zones are symmetric be-
tween planes at x=1.0 in., y=1.85 in. and x=1.0 in., y=1.1 in., for the upper and lower zones respectively.

Figure 4.3.2-14 shows plots at z=7.3 and 7.7 in. Symmetric flow between planes can be seen, while sym-
metry between upper and lower portions of the rig does not exist. Rear recirculation zones are located at
approximately x=2.85 in., y=2.1 in. for the upper zone and x=3.05 in., y=0.9 in. for the lower zone. The
placement of the upper recirculation zone forward of the lower recirculation zone indicates that the
reattachment point occurs farther upstream for the lower recirculation zone. Asymmetry can also be
seen for the forward recirculation zones in the z=7.7 in. plane. Placement of the forward recirculation
zones in the z=7.3 in. plane is symmetric.

Planes at z=7.2 in and z=7.8 in. are seen in Figure 4.3.2-15. Rear recirculation zones here are symmetric
between planes and between upper and lower halves of the rig. Forward recirculation zones are clearly
present at z=7.2 in., but are very disordered at z=7.8 in. These planes are outside the primary jet inlet
diameter, and therefore more of the flow moves directly downstream instead of being entrained into the
forward recirculation zones.

More vector plots are seen in Figures 4.3.2-16 through 4.3.2-27. The annular jet inlet extends between 6.8
in < z < 8.2 in., where a finer grid was used. Table 4.3-1 presents approximate forward and rear recircu-
lation zone centers. From this table, some trends are evident about the recirculation zones. The forward
recirculation zones placement is steady between 7.2 in. £ 2 < 7.8 in. Outside these limits no center is well
defined within the measured portion of the flow. Rear recirculation zones tend to move downstream
and toward the upper and lower walls of the rig. Rear recirculation zone locations are visibie between
6.8 in. < z < 8.2 in. within the measured flow.

Backflow can be seen upstream of x=1.5 in., even out to the limits of the cell. Recirculating flow could
exist in this region, but due to beam restrictions, points closer to the wall could not be measured. Mea-
surements downstream of x=1.5 in. show that the flow velocity accelerates from x=1.5 in. on the way
downstream between recirculation zones and then diffuses as the recirculation zones are passed. This is
seen to happen to the cell boundaries.



Table 4.3-I.
jets recirculati
Forward zones Rear zones

z X y X y X y X y
6.8 -- >2.5 -- <0.5 -- >2.5 - <0.5
6.9 - >2.5 - <0.5 34 24 .- <0.5
7.0 -- >2.5 -- <0.5 34 23 33 <0.5
7.1 - >2.5 - -~ 35 22 3.2 0.8
7.2 1.1 1.7 1.1 1.3 3.1 2.1 3.0 0.9
73 1.0 1.8 1.0 1.1 2.9 2.1 3.0 0.9
7.4 1.0 1.8 1.0 1.1 2.7 2.1 2.8 0.9
75 1.0 1.8 1.0 1.1 2.8 2.1 2.8 0.9
7.6 1.0 1.8 1.0 1.2 2.9 2.1 2.9 0.9
7.7 0.7 1.8 1.0 1.2 2.8 2.1 3.1 0.8
7.8 - - 0.7 1.2 3.0 2.15 3.0 0.8
7.9 - -- -- - 33 2.2 3.3 0.8
8.0 -- -- -- -- 31 2.2 3.5 0.7
8.1 : -- -- - -- 31 2.3 35 0.7
8.2 -- - -- -- 3.3 >2.5 3.5 0.7

Comparing vector plots to the primary jets only case, some similarities can be seen. The influence of the
primary jets on the flowfield is seen downstream of x=1.5 in. Flow downstream of x=1.5 in., in the annu-
lar and primary jet case, is seen to be very similar to the flow in the primary jets only case. Recircula-
tion zones for the annular and primary jet case are larger and extend downstream farther, but the flow is
still seen to accelerate past the recirculation region and then diffuse. This {5 an indication of how much
influence the primary jets have on the flow.

4.3.2. ul wifield Resul

The Urms and Vrms ¥z plane contour plots are presented in Figures 4.3.2-28 through 4.3.2-37. Figure
4.3.2-28 contains plots for the station at x=0.5 in. Both plots show a flat profile outside of the annular
jet inlet and inside the annular jet region. Peak fluctuations occur in the annular gap where fluid is en-
tering.

The Urmsg and Vrms plots at x=1.0 in. can be seen in Figure 4.3.2-29. The magnitude of the fluctuations
increase and spread out from x=0.5 in. to x=1.0 in. Fluctuations at the center of the annular region have
increased due to the pair of counterrotating recirculation zones formed in this region. Magnitudes out-
side the annular jet remain small compared to the annular jet region.

Plots at x=1.5 in. show a definite change in the Urms and Vrmg velocity distribution due to primary jet
interaction (Figure 4.3.2-30). The Urms plot shows decreased turbulence at the centerplane, z=7.5 in.,
from the top to bottom walls of the rig due to the primary jets. Three pairs of peak fluctuations occur on
the sides of the centerplane. The peaks at the bottom and top wails are caused by the flow above and
below the annular jets accelerating around the primary jets and flowing downstream. The pair of peaks
at the center of the rig correspond to increased flow around the primary jets from recirculating fluid in
the center of the annular jet. The turbulence diffuses as the edges of the cell are reached.



The Vrms plot at x=1.5 in. shows decreased magﬁitudes at the upper and lower walls at the rig center-
plane. A peak is observed at the center of the cell due to the fluctuation of the stagnation point of the
primary jets. The magnitudes dissipate as the cell boundaries are reached.

The Urms component at x=2.0 in. (Figure 4.3.2-31) shows a decrease at both upper and lower walls in the
rig center and peak magnitudes occur along the rig centerline between z=7.0 in. and z=8.3 in. The drop in
magnitude along the upper and lower walls is due to a recirculation zone, while the peaks at the center
of the rig are caused from fluid being accelerated between the upper and lower recirculation zones. The
Vrms component at x=2.0 in. shows peak velocities along the rig centerline between 2=7.0 in. and 2=7.9
in. Similar results are evident at downstream locations (Figures 4.3.2-32 through 4.3.2-37).

Figures 4.3.2-38 and 4.3.2-39 show line plots of Urms and Vg velocities as they develop in the rig for
planes at z=7.0, 7.5, and 8.0 in. Peak Urms fluctuations are at the annular jet exit and immediately
downstream of the primary jets. Peak Vrms fluctuations can be seen in the region of the primary jet
stagnation. On downstream, the magnitudes decrease and spread out. Uniform fluctuations from the
bottom to the top walls can be seen at x=6.0 in. Magnitudes at x=6.0 in. are slightly larger than the
primary jets case and much smaller than the annular jet case.

The 2-D turbulent kinetic energy contour plots are presented in Figures 4.3.2-40 through 4.3.2-44. The K'
distribution at x=0.5 and 1.0 in. (Figure 4.3.2-40) shows similar distributions. Peak turbulence occurs at
the edges of the annular jet where large shear stress is present. Qutside the annular inlet, the turbu-
lence is uniform to the cell boundaries and walls. The plot at x=1.0 in. shows peak magnitudes nearly
doubling with increased turbulence within the annular region. Distributions toward the cell boundaries
continue to be uniform.

The plot at x=1.5 in. shows peak turbulence occurring at the rig center and at the top and bottom walls.
The decrease seen in the rms plots is also seen here in Figure 4.3.2-41. The trends seen in this plot corre-
spond to the trends explained in the rms plots in Figure 4.3.2-30.

At x=2.0 in., peak turbulence values can be seen at the center of the rig with a sharp drop in turbulence
energy between z=7.0 and 8.0 in. at the upper and lower walls. The formation of the downstream recir-
culation regions in these areas are responsible for the drop in turbulence energy. Magnitudes decrease as
cell boundaries and walls are reached. Similar trends are present in plots downstream (Figures 4.3.242,
4.3.2-43, and 4.3.2-44). :

Figure 4.3.2-45 contains the 2-D turbulent kinetic energy distribution throughout the rig at the planes
=7.0,7.5,and 8.0 in. The largest turbulence energy can be seen concentrated in the region of annular and

primary jet intersection at x=1.5 and 2.0 in. Magnitudes decay and spread downstream and away from

the rig centerplane. Uniform turbulence energy between upper and lower walls is present at x=6.0 in.

yz plane contour plots of the xy plane Reynolds shear stress are in Figures 4.3.2-46 through 4.3.2-50. The
U'V' distribution at x=0.5 in. is seen in Figure 4.3.2-46. Negative stresses are observed at the edges of
the annular jet inlet due to the transfer of momentumn from the edges of the annular jet to the fluid
within the rig. A constant distribution is seen throughout the rest of the plane indicating very little
momentum transfer. Similar results occur at x=1.0 in. Here, the magnitudes of the stresses have nearly
doubled and spread to the inner annular jet region. A uniform region is still seen throughout the rest of
the plane.

At the x=1.5 in. plane, three regions of decreased, or negative, stress is seen separated by a strip of in-
creased U'V' at z=7.5 in. The three regions of decreased magnitude occurs in the same area as the peak
fluctuations occurred for the Urmg plot in Figure 4.3.2-30. The negative values are therefore caused by
the increased velocity gradients in these regions as the flow accelerates around the primary jets. The
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central peak must be caused by the cross jets entering in this location. Outside of the annular jet inlet,
z=6.8 and z=8.2 in., a uniform shear stress extends to the cell boundaries.

At x=2.0 in., a region of peak positive UV' occurs along the upper haif of the rig while negative U'V"
occurs through the lower half of the rig. The magnitudes continue to decrease and the peaks tend to
spread toward the walls and boundaries of the rig on downstream. The peak through the rig at 2=7.5
in. seems to exist on downstream. Similar distributions are present downstream of x=2.0 in. Figures
4.3.2-48, 4.3.2-49, and 4.3.2-50 contain these plots.

Figure 4.3.2-51 shows line plots of the Reynolds shear stress as it develops downstream at planes z=7.0,
7.5, and 8.0 in. The largest fluctuation of shear stress is present at x=1.5 in. Here, primary and annular
jet interaction produces large velocity gradients and momentum transfer. Downstream and away from
the centerplane, magnitudes decay and approach a uniform distribution of shear stress at x=6.0 in.
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TE92-2652
Figure 4.3.1-1. Annular and primary jets with smoke in primary jet, single frame picture, z=7.5 in.

TE92-2653
Figure 4.3.1-2. Annular and primary jets with smoke in primary jet, 127 frame average picture, z=7.5 in.
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_ TE92-2654
Figure 4.3.1-3. Annular and primary jets with smoke in primary jet, single frame picture, 2=7.0 in.

TE92-2655
Figure 4.3.14. Annular and primary jets with smoke in primary jet, 127 frame average picture, z=7.0 in.
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TE92-2656
Figure 4.3.1-5. Annular and primary jets with smoke in primary jet, single frame picture, z=8.0 in.

TE92-2657
Figure 4.3.1-6. Annular and primary jets with smoke in primary jet, 127 frame average picture, 2=8.0 in.
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Figure 4.3.1-7. Annular and primary jets mean concentration distribution with smoke in lower primary
jet, z=735 in.
495

FRECENNG TESE BLAHK NOT TRMED



CONCENTRATION

o 1<)
240 27 %008 inches
L —>— x=1.0 inches
\ —~C— x=1.5 inches
200 — - N —O— x=2.0 inches.
; AT T —&— x23.0 inches

CONCENTRATION

o]> P '. PO WU S G S T RN S R SR T SR S R G | i L e )

0.0 0.5 1.0 15 2.0 25 3.0
Y (inches)

TEQ92-2659

Figure 43.1-8. Annular and primary jets mean concentration distribution with smoke in lower primary
jet, z=70in.
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Figure 4.3.1-9. Annular and primary jets mean concentration distribution with smoke in lower primary
jet, z=8.0 in.
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Figure 4.3.1-10. Annular and primary jets mean concentration distribution with smoke in lower primary
jet, z=6.5 in.
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Figure 4.3.1-11. Annular and primary jets mean concentration distribution with smoke in lower primary

jet, z=8.5 in.
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Figure 4.3.1-12. Annular and primary jets mean concentration along primary jet axis with smoke in
lower primary jet, x=1.5 in.
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TES2-2664
Figure 4.3.1-13. Annular and primary jets with smoke in annular jet, single frame picture, z=7.5 in.

" TE92-2665

Figure 4.3.1-14. Annular and primary jets with smoke in annular jet, 127 frame average picture, z=7.5
in.
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TE92-2666 .
Figure 4.3.1-15. Annular and primary jets with smoke in annular jet, single frame picture, z=7.0 in.

- TE92-2667
Figure 4.3.1-16. Annular and primary jets with smoke in annular jet, 127 frame average picture, z=7.0
in.
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TE92-2668
Figure 4.3.1-17. Annular and primary jets with smoke in annular jet, single frame picture, z=8.0in.

TE92-2669
Figure 4.3.1-18. Annular and primary jets with smoke in annular jet, 127 frame average picture, z=8.0
in.
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Figure 4.3.1-19. Annular and primary jets mean concentration distribution with smoke in annular jet,
z=7.5 in.
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Figure 4.3.1-20. Annular and primary jets mean concentration distribution with smoke in annular jet,
z=7.0 in.
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Figure 4.3.1-21. Annular and primary jets mean concentration distribution with smoke in annular jet,

z=8.0 in.
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Figure 4.3.1-22. Annular and primary jets mean concentration distribution with smoke in annular jet,
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Figure 4.3.1-23. Annular and primary jets mean concentration distribution with smoke in annular jet,
z=8.5 in.
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Figure 4.3.2-6. Annular and primary jets V and Vrms distribution of the primary jets at y=1.0in.
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Figure 4.3.2-7. Annular and primary jets V and Vrmg distribution of the primary jets at y=1.25 in.
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Figure 4.3.2-8. Annular and primary jets V and Vms distribution of the primary jets at y=1.5 in.
519



14.0 -

12.0
:
210.0 = ! !
g
~ 80 |
2 : :
5 TR . -
2 80 : ~
S t §
: ; ;
RN R i
2.0 . o BRI L
- -;- . . B , - : . . !
0.0 - — : — b
1.25 1.50 - 1.75
X (inches)

5.0 ’/f‘_g-_%.

4.0

y

V... (W/sec)

20~

1.0 P

0.0 ] 1 !
1.25 1.50 1.7%

TES2-2683

Figure 4.3.2-9. Annular and primary )ets ‘and Vs distribution cbmparison of the primary jets at y =0.6
' ' S in.and y=24in." ) ' '

520



168 - :
. : A N om (0.73<y 21.0)
. Lo . : -a—T (2.0s Y2277
142 |- X=0.08 inches \m| —— Right (7.725227.0)
: - Vi W= 14t (797572825
120 f
100 -
§ 8.00 |-~ :
£ R N U A R B S (L | SR A
:' ¢.00 !
.00 0
| !
2.00 —
0.00 b~ -
0.450 0.500 0.550 0.500 0.650 0.700 0.750 0.800
ANNULAR JET RADIUS (inches)
—a— Bottom (0.73 5 ¥ 21.0)
3.00 - . -o—Top . {20sY2277)
X =0.08 inches ——Right (7.72<2z 270
r S R =gt (7.97 S 228125} -
250 b - A K
/9 ‘
) ‘ L 4
200 . L
:z | |
1.50 |- :
D! ‘ // .
100 : R - -
ROSSNE S
0.50 20 N
. probe volume diameter
o probe volume {bngth’ -
0.00 : L el ,, I N ]
0.450 0.500 0.550 0.600 0.650 0.700 0.750 0.500
ANNULAR JET RADIUS (inches)
TE92-2684
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Figure 4.3.2-12. Annular and primary jets mean velocity vector plot at z=7.5 in.
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Figure 4.3.2-13. Annular and primary jets mean velocity vector plot at a) z=74 in. b) z=7.6 in.
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Figure 4.3.2-14. Annular and primary jets mean velodity vector plot at a) z=73in. b) z=7.7 in.
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Figure 4.3.2-15. Annular and primary jets mean velodity vector plot at a) z=7.2 in. b) z=7.8 in.
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Figure 4.3.2-16. Annular and primary jets mean velocity vector plot at a) z=7.1 in. b) z=7.9 in.
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Figure 4.3.2-17. Annular and primary jets mean velocity vector plot at a) Z=7.0 in. b) z=8.0 in.
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Figure 4.3.2-18. Annular and primary jets mean velocity vector plot at a) z=6.9 in. b) z=8.1 in.
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Figure 4.3.2-19. Annular and primary jets mean velocity vector plot at a) 2=6.8 in. b) z=8.2 in.
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Figure 4.3.2-20. Annular and primary jets mean velodity vector plot at a) z=6.7 in. b) z=8.3 in.

531



S Rt/sec

AN AN SRR M AR A RN AT

W,
,./,,//aﬂ_ —sx\ﬁ‘_\\
.._,ffddﬂ_ ﬁﬁ*ﬁss_\\
ST
oW\,

llaa;}/////’———-....

PRSI E R NN BN LN R RN

N N R N I X IR,

l.L‘.leLllllLLlLLJ_LlLLILlAlll],LlL:l_!,lI|lllllL1.‘LlLlllll[LLullllllll

s laba o balaolalabalalolalalds

x (inches)

G

20 25 30 35 40 45 50 55 6.0 85

R b e
TN NNNN~ e -0 0O

(seyouy) £

0. m51nytq

5 ft/sec

dan
locanons

S

SULARRRIRRRNANANAAT,

W,
il
Ll
UL

LTS

IliLllll]llllllL.l!llllLlllllIL‘J_LLJ_L*L*L]IIIA

20 25 30 35 40 45 S50 55 6.0 85

'S P

S R IR R R A R E T bl

-

".-A.--.-.--...\‘\ l.“o

’ m -

R R .l” -\ON

ada e Vol s 0a¥olelabaladadalbaly AW

TE92-2695

X (inches)

(o)

..........

COTNNNNN> v~ "= rmrOO0000C

(seyouy) £

Figure 4.3.2-21. Annular and primary jets mean velocity vector plot at a) z=6.6 in. b) z=8.4 in.

532



5 ft/sec

vy vt

W,
,,/,////d | _-s\\\\-
-,//AA//d J ~_-\\\-,
../,22 ..

AW,

T T TN RN B N I

'ZAR AR RN NN

¥R IEY Il

e latabatobsdalolalolalelalalyd

4
-
-
-4
—4
.
-4
-4
E
-4
4
4
4
4
4
4
-4
4
-
-4

x (inches)

20 25 30 35 40 45 50 55 60 65

0. 05 Lobjl

OWUTNOVOTNODOT N

(seyouy) £

ONNNNN - = OO0 O

caa
locapons

11
il

ot | |«—| | Zr—

]
pu————— |
s |

Vo
. ﬁ B
— (81 |}

Q.!lﬂll

h

5 ft/sec

MNNNNNY - 0000

SRR R AR R AR RAR A N AN D]

W0,
Wil
.
___,,__#__ﬁ\\N\\\\\>

awantiinmm,

\\\\\ -\—\\~s~....

[P N B TN

R FEUEE FUNTE e

20 25 30 35 40 45 50 55 60 65

RN P TN ST U YRR

ris ]

e

LI_L'

f

ot

(seyouy) £

TE92-2686

x (inches)

{0)

0. 051o’yﬂ

Figure 4.3.2-22. Annular and primary jets mean velocity vector plot at a) 2=6.5 in. b) z=8.5 in.

533



5 ft/sec

vl

/////// :: s
//////// \ 1.
il Wi,
W

AR LANNSSR R AL A TP

/'l\\-‘-.-.. .....

llll\\\\‘-...,:a\\\\

lll[lkllLLLAA‘AIJALLILLILLIllllLL]xl

i

lllllfllﬂlrll]t

15| 20 25 30 35 40 45 50 55 60 65

data
lecauons

5 ft/sec

lLlLlllLlllL!Lll

ﬂwﬂuﬁv‘vooﬂ-ﬂwﬂu4A‘Auﬂuﬂf4uﬂ
3222221‘1110000

(seyoun) £

9. 05 1.0 \

v

~ Wi,

i,
s,

SRR e

Wi,

TS BPTTE FRY T SWE RS SUVWE B

Loaasdaaa o b Lol

st

aaaadlag

ahabaled o b Neladalaladolalalsd

\n:
Ww'
Q
w
n
w
nu.,
w.
5:
.
o-,
N
\n
o
”‘ —
o
s X 2
n
o~
Q
~
n
-
Q
n
o
o
7

CONOLTNODVOLTNORDO L NO
CNNNNN- = 00000

(seyou) £

TE92-2697

Figure 4.3.2-23. Annular and primary jets mean velocity vector plot at a) =64 in. b) z=8.6 in.

534

]



5 ft/sec

W i<
W is_
NI 7ZZE
/////// 5 :\\\\\\ l.n.m.nx\
W §
SRS TRLAAN RANANRARERY; lm

OCmMOVETNOVRINOAM®D LN

(seyoul) £

C)

locagons

T

jrmgusstmg | gl —_——
pmeswne—" | 1 =
jumm—— ) } ) | § So—
jom———" | | S amsm—
fem— | grmpm—

- |

5 ft/sec

.......

(seyouy) £

. 3
WVWIHTTH | M L
,22:5 . m)
,,/2;_ S\\:\ ;u um
551:::::::. 1 "
varbzzermn et ANy, 1 e

Figure 4.3.2-24. Annular and primary jets mean velodity vector plot at a) z=6.3 in. b) z=8.7 in.

535



§ ft/sec

W

W
RO d iz
S\t

WY 12,

sVl ravornansnanngty

20 25 30 35 40 45 50 55 6.0 65

R 2 N I R,

Illll\\\\\. A NS e,

P Y X A R AN B L RN

llllLLLLlLLLLlJLXIllLLLILL!]L‘Anlll)lllLJlLllLll]llll!LlelLLlLlil

0. 05 1.o|1.s‘

alelslodalotsbolodolalsalalaly]

...............

OTNNNNNY" v~ =000 0

(seyou)) £

x (inches)

locavons

|
g

. * UL
allll

5 ft/sec

W

EWE FREWE FNTWE FETUE F

W,
il : N i,
S\

s\t

it s |

vVt /2o rranSANN VY

NN AT e s e

ANt e ey

/ll::-..--:llv\\\\\

TS PV FUTOU FUTT SUTTS P

0. 05 1.o|1.sl

s oo b ool s dadadalolatsdod,]

ONNNNNr- - - 0000

(seyout) £

TES2-2689

536

)

x (inches)

(

20 25 30 35 40 45 50 S5 6.0 865
b

Figure 4.3.2-25. Annular and primary jets mean velocity vector plot at a) z=6.2 in. b) z=8.8 in.



5 ft/sec

5 ft/sec

W wwwt g

W,

W,
Wz

W72

AllllL11L11L141|||1111111L1LL1111|

20 25 30 35 40 45 50 55 6.0 65

T BWSYE FTTTI SUNYS INTTS FW N WS FTUua BN

20 25 30 35 40 45 50 55 6.0 65

N7 e W,

S\\SVNVITH/777728 SNITIZ72

LN T T FEPEVE N 2 T .M NV P v s e NPT I.w

Y XA N A N B . Im.llm.v.ll ] R lm

. ’ { - S ___ AN P4 ]

VY Y F LY T ; wn - o P R T .m

o~ - l%o = = AN Teess -

clalabalalolaslalodotalolabat,] ﬁv. — y|q||| s da s h e b o bl aladalatalalelals

QUOTNOROvTNOMOLN o QUOINODNETNODD ¥

ONNNNN~ -+ 00O O vv(_ ONNNNN -+~ w0000
(seyou)) « (seyouy) «

TE92-2700
6.1 in. b) z=8.9 in,

537

x (inches)

0. 05 Lopsi

Figure 4.3.2-26. Annular and primary jets mean velocity vector plot at a) z



5 ft/sec

W

~ * \ ~ \ .
W,
<\

N\ IIRTY 77

Wil

R I R A A A N B

At P e ey,

IIII\|\\---...

Py & S A L ey

T FUUYE FUTYE STTRE P T FTTTE YUY U TS AN SUTEE NN U

alabaladalold ot it tadalalals

20 25 3.0 35 40 45 50 55 80 85

QUOVTNORO L NO DDy

.........

MNNNNNS = - ~DOOO0 O

(setouy) 4

-0. 05 LD%S’

x (inches)

locauons

)

a

(

,QQQQQ

allll]

5 ft/sec

W

Wi
S\l
WU,

N\ EXINIEAS A A N V7

NN

NNNSENIN T 2 2 eSSy )

/////v |\\\\\\\

///Ill..-.a-llvl.\\\\\

—_._.—.-—___—_pL

T IR FURTE BT yus
TE92-2701

NI FUUTS ST I

20 25 3.0 35 40 45 50 S5 60 65

x (inches)

(0)

TS N

TS N

.....

(seyouy) £

.0. 05 1.olx.5‘
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